Acids and Bases-SWS

Katie Spence

Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required)

AUTHOR
Katie Spence

To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the **FlexBook**®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the **FlexBook Platform**®.

Copyright © 2013 CK-12 Foundation, www.ck12.org

The names "CK-12" and "CK12" and associated logos and the terms "FlexBook®" and "FlexBook Platform®" (collectively "CK-12 Marks") are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws.

Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms.

Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/licenses/by-nc/3.0/), as amended and updated by Creative Commons from time to time (the "CC License"), which is incorporated herein by this reference.

Complete terms can be found at http://www.ck12.org/terms.

Printed: November 17, 2013

CONCEPT -

Acids and Bases-SWS

- I can describe properties and uses of acids and bases.
- I can explain the difference between strong acids and bases and weak acids and bases.
- I can identify acids bases using the pH scale.
- I can test substances' pH using indicators.
- I can explain what happens to acids and bases when mixed.
- I can compare and evaluate properties of compounds.
- I can explain and evaluate impacts of acids and bases on the natural world.

Lesson Objectives

- I can describe properties and uses of acids and bases.
- I can explain the difference between strong acids and bases and weak acids and bases.
- I can identify acids bases using the pH scale.
- I can test substances' pH using indicators.
- I can explain what happens to acids and bases when mixed.
- I can compare and evaluate properties of compounds.
- I can explain and evaluate impacts of acids and bases on the natural world.

Lesson Vocabulary

- Ion
- Concentration
- Acid
- Base
- Hydrogen Ion
- · Hydroxide Ion
- pH
- Indicator
- Acidity
- Alkalinity
- Neutralization
- Salt
- · Reaction

Introduction

No doubt you are familiar with some common acids. Besides orange juice, vinegar and lemon juice are both acids. Look at the boy in **Figure 1.1**. You can tell by the expression on his face that lemon juice tastes sour. In fact, all acids taste sour. They share certain other properties as well.

Acids

An **acid** is an ionic compound that produces positive hydrogen ions (H^+) when dissolved in water. An example is hydrogen chloride (HCl). When it dissolves in water, its hydrogen ions and negative chloride ions (Cl^-) separate, forming hydrochloric acid. This can be represented by the equation:

FIGURE 1.1

Like other acids, lemon juice tastes sour.

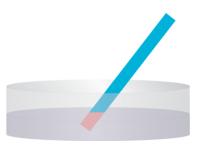
$$HCl \xrightarrow{H_2O} H^+ + Cl^-$$

Properties of Acids

You already know that a sour taste is one property of acids. (**Never** taste an unknown substance to see whether it is an acid!) Acids have certain other properties as well. For example, acids can conduct electricity because they consist of charged particles in solution. Acids also react with metals to produce hydrogen gas. For example, when hydrochloric acid (HCl) reacts with the metal magnesium (Mg), it produces magnesium chloride (MgCl₂) and hydrogen (H₂). This is a single replacement reaction, represented by the chemical equation:

$$Mg + 2HCl \rightarrow H_2 + MgCl_2$$

You can see an online demonstration of a similar reaction at this URL: http://www.youtube.com/watch?v=oQz5Y Esx7Fo.


Detecting Acids

Certain compounds, called indicators, change color when acids come into contact with them. They can be used to detect acids. An example of an indicator is a compound called litmus. Litmus is actually a fungus ground into powder. It is placed on small strips of paper that may be red or blue. If you place a few drops of acid on a strip of blue litmus paper, the paper will turn red. You can see this in **Figure 1.2**. Litmus isn't the only indicator for detecting acids. Red cabbage juice also works well, as you can see in this entertaining video: http://www.youtube.com/watch?v=vrOUdoS2BtQ&feature=related.

Uses of Acids

Acids have many important uses, especially in industry. For example, sulfuric acid is used to manufacture a variety of different products, including paper, paint, and detergent. Some other uses of acids are illustrated in **Figure 1.3**. You also eat many foods that have acidic qualities.

FIGURE 1.2

Blue litmus paper turns red when placed in an acidic solution.

Both nitric acid and phosphoric acid are used to make fertilizer.

Hydrochloric acid is used to clean swimming pools, bricks, and concrete.

Sulfuric acid is an important component of car batteries.

FIGURE 1.3

Acids are used widely for many purposes.

Bases

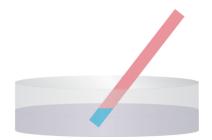
A **base** is an ionic compound that produces negative hydroxide ions (OH^-) when dissolved in water. For example, when the compound sodium hydroxide (NaOH) dissolves in water, it produces hydroxide ions and positive sodium ions (Na^+) . This can be represented by the equation:

$$NaOH \xrightarrow{H_2O} OH^- + Na^+$$

Properties of Bases

All bases share certain properties, including a bitter taste. (**Never** taste an unknown substance to see whether it is a base!) Did you ever taste unsweetened cocoa powder? It tastes bitter because it is a base. Bases also feel slippery. Think about how slippery soap feels. Soap is also a base. Like acids, bases conduct electricity because they consist of charged particles in solution.

Detecting Bases


Bases change the color of certain compounds, and this property can be used to detect them. A common indicator of bases is red litmus paper. Bases turn red litmus paper blue. You can see an example in **Figure** 1.4. Red cabbage juice can detect bases as well as acids, as you'll see by reviewing this video: http://www.youtube.com/watch?v=v rOUdoS2BtQ&feature=related (3:14).

MEDIA

Click image to the left for more content.

FIGURE 1.4

Red litmus paper turns blue when placed in a basic solution.

Uses of Bases

Bases are used for a variety of purposes. For example, soaps contain bases such as potassium hydroxide. Many bases are used in cooking as well. Other uses of bases are pictured in **Figure 1.5**.

Many cleaning products contain bases such as sodium hydroxide.

Concrete contains the base calcium hydroxide.

Deodorant may contain the base aluminum hydroxide.

FIGURE 1.5

Bases are used in many products.

Strength of Acids and Bases

The acid in vinegar is weak enough to safely eat on a salad. The acid in a car battery is strong enough to eat through skin. The base in antacid tablets is weak enough to take for an upset stomach. The base in drain cleaner is strong enough to cause serious burns. What causes these differences in strength of acids and bases?

Concentration of Ions

The strength of an acid depends on the concentration of hydrogen ions it produces when dissolved in water. A stronger acid produces a greater concentration of ions than a weaker acid. For example, when hydrogen chloride is added to water, all of it breaks down into H^+ and Cl^- ions. Therefore, it is a strong acid. On the other hand, only about 1 percent of acetic acid breaks down into ions, so it is a weak acid.

The strength of a base depends on the concentration of hydroxide ions it produces when dissolved in water. For example, sodium hydroxide completely breaks down into ions in water, so it is a strong base. However, only a fraction of ammonia breaks down into ions, so it is a weak base.

The pH Scale

The strength of acids and bases is measured on a scale called the pH scale (see **Figure** 1.6). The symbol **pH** represents **acidity**, or the concentration of hydrogen ions (H⁺) in a solution. Pure water, which is neutral, has a pH of 7. With a higher concentration of hydrogen ions, a solution is more acidic but has a lower pH. Therefore, acids have a pH less than 7, and the strongest acids have a pH close to zero. Bases have a pH greater than 7, and the strongest bases have a pH close to 14. You can watch a video about the pH scale at this URL: http://www.youtube.com/watch?v=M8tTELZD5Ek (2:23).

MEDIA

Click image to the left for more content.

Reactions of Acids and Bases

As you read above, an acid produces positive hydrogen ions and a base produces negative hydroxide ions. If an acid and base react together, the hydrogen and hydroxide ions combine to form water. This is represented by the equation:

$$\mathrm{H^+} + \mathrm{OH^-} \rightarrow \mathrm{H_2O}$$

An acid also produces negative ions, and a base also produces positive ions. For example, the acid hydrogen chloride (HCl), when dissolved in water, produces negative chloride ions (Cl^-) as well as hydrogen ions. The base sodium hydroxide (NaOH) produces positive sodium ions (Na^+) in addition to hydroxide ions. These other ions also combine when the acid and base react. They form sodium chloride (NaCl). This is represented by the equation:

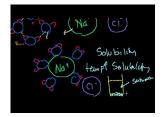

	Environmental Effects	pH Value	Examples
ACIDIC		0	Battery acid
		1	Sulfuric acid
		2	Lemon juice, Vinegar
		3	Orange juice, Soda
	All fish die (4.2)	4	Acid rain (4.2-4.4) Acidic lake (4.5)
	Frog eggs, tadpoles, crayfish and mayflies die (5.5)	5	Bananas (5.0-5.3) Clean rain (5.6)
NEUTRAL	Rainbow trout begin to die (6.0)	6	Healthy lake (6.5) Milk (6.5-6.8)
		7	Pure water
		8	Sea water, Eggs
		9	Baking soda
		10	Milk of Magnesia
		11	Ammonia
		12	Soapy water
		13	Bleach
BASIC		14	Liquid drain cleaner

FIGURE 1.6

This pH scale shows the acidity of several common acids and bases. Which substance on this scale is the weakest acid? Which substance is the strongest base?

$$Na^+ + Cl^- \rightarrow NaCl$$

Sodium chloride is called table salt, but salt is a more general term. A **salt** is any ionic compound that forms when an acid and base react. It consists of a positive ion from the base and a negative ion from the acid. Like pure water, a salt is neutral in pH. That's why reactions of acids and bases are called **neutralization reactions**. Another example of a neutralization reaction is described in **Figure** 1.7. You can learn more about salts and how they form at this URL: http://www.youtube.com/watch?v=zjIVJh4JLNo (13:21).

MEDIA

Click image to the left for more content.

FIGURE 1.7

What neutral products are produced when antacid tablets react with hydrochloric acid in the stomach?

Why pH Matters

Acidity is an important factor for living things. For example, many plants grow best in soil that has a pH between 6 and 7. Fish also need a pH close to 7. Some air pollutants form acids when dissolved in water droplets in the air. This results in acid fog and acid rain, which may have a pH of 4 or even lower (see **Figure** above). **Figure** below shows the effects of acid fog and acid rain on a forest in the Grayson Highlands State Park in Virginia. In the same region, acid rain lowered the pH of surface waters such as streams and lakes. As a result, the water became too acidic for fish and many other water organisms to survive.

Even normal (not acid) rain is slightly acidic. That's because carbon dioxide in the air dissolves in raindrops, producing a weak acid called carbonic acid. When acidic rainwater soaks into the ground, it can slowly dissolve rocks, particularly those containing calcium carbonate. This is how water forms cavesand sinkholes in some places in the country.

Lesson Summary

- An acid is an ionic compound that produces positive hydrogen ions when dissolved in water. Acids taste sour and turn blue litmus paper red.
- A base is an ionic compound that produces negative hydroxide ions when dissolved in water. Bases taste bitter
 and turn red litmus paper blue.
- The strength of acids and bases is determined by the concentration of ions they produce when dissolved in water. The concentration of hydrogen ions in a solution is called acidity. It is measured by pH. A neutral substance has a pH of 7. An acid has a pH lower than 7, and a base has a pH greater than 7.
- The reaction of an acid and a base is called a neutralization reaction. It produces a salt and water, both of which are neutral.

Lesson Review Questions

Recall

- 1. What is an acid? Give one use of acids.
- 2. What is a base? Name a common product that contains a base.

- 3. Outline how litmus paper can be used to detect acids and bases.
- 4. Define acidity. How is it measured?

Apply Concepts

- 5. An unknown substance has a pH of 7.2. Is it an acid or a base? Explain your answer.
- 6. If hydrochloric acid (HCl) reacts with the base lithium hydroxide (LiOH), what are the products of the reaction? Write a chemical equation for the reaction.

Think Critically

7. Battery acid is a stronger acid than lemon juice. Explain why.

Points to Consider

Neutralization reactions, like the other chemical reactions you have read about so far, involve electrons. Electrons are outside the nucleus of an atom. Certain other reactions involve the nucleus of an atom instead. These reactions are called nuclear reactions. You will read about them in the next chapter, "Nuclear Chemistry."

- How do you think nuclear reactions might differ from chemical reactions?
- Elements involved in nuclear reactions are radioactive. How do you think radioactive elements differ from other elements?

Opening image copyright Dudarev Mikhail, 2011. http://www.shutterstock.com. Used under license from Shutterstock.com.

- Ion
- Concentration
- Acid
- Base
- · Hydrogen Ion
- Hydroxide Ion
- pH
- Indicator
- Acidity
- Alkalinity
- Neutralization
- Salt
- Reaction

References

- 1. Image copyright Gelpi, 2011. http://www.shutterstock.com. Used under license from Shutterstock.com
- 2. CK-12 Foundation. . CC-BY-NC-SA 3.0
- 3. Fertilizer: image copyright sarka, 2011; muriatic acid: CK-12 Foundation; battery: image copyright Hywit Dimyadi, 2011. Fertilizer and battery: http://www.shutterstock.com. Fertilizer and battery: used under licenses from Shutterstock.com; muriatic acid: CC-BY-NC-SA 3.0
- 4. CK-12 Foundation. . CC-BY-NC-SA 3.0

- 5. Cleaning supplies: image copyright Tischenko Irina, 2011; concrete blocks: image copyright Katia, 2011; deodorant: Ggonnell. Cleaning supplies and concrete blocks: http://www.shutterstock.com; deodorant: http://commons.wikimedia.org/wiki/File:Deoroller_DB_%28blur%29.jpg. Cleaning supplies and concrete blocks: used under licenses from Shutterstock.com; deodorant: public domain
- 6. CK-12 Foundation. . CC-BY-NC-SA 3.0
- 7. Image copyright Christian Delbert, 2011. http://www.shutterstock.com. Used under license from Shutterstock.com